Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonlinear Model Predictive Control of a Conductance-Based Neuron Model via Data-Driven Forecasting (2312.14274v2)

Published 21 Dec 2023 in q-bio.NC, cs.SY, and eess.SY

Abstract: Objective. Precise control of neural systems is essential to experimental investigations of how the brain controls behavior and holds the potential for therapeutic manipulations to correct aberrant network states. Model predictive control, which employs a dynamical model of the system to find optimal control inputs, has promise for dealing with the nonlinear dynamics, high levels of exogenous noise, and limited information about unmeasured states and parameters that are common in a wide range of neural systems. However, the challenge still remains of selecting the right model, constraining its parameters, and synchronizing to the neural system. Approach. As a proof of principle, we used recent advances in data-driven forecasting to construct a nonlinear machine-learning model of a Hodgkin-Huxley type neuron when only the membrane voltage is observable and there are an unknown number of intrinsic currents. Main Results. We show that this approach is able to learn the dynamics of different neuron types and can be used with MPC to force the neuron to engage in arbitrary, researcher-defined spiking behaviors. Significance. To the best of our knowledge, this is the first application of nonlinear MPC of a conductance-based model where there is only realistically limited information about unobservable states and parameters.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (69)
  1. Grosenick, L., Marshel, J.H., Deisseroth, K.: Closed-loop and activity-guided optogenetic control. Neuron 86(1), 106–139 (2015) https://doi.org/10.1016/j.neuron.2015.03.034 Zaaimi et al. [2022] Zaaimi, B., Turnbull, M., Hazra, A., Wang, Y., Gandara, C., McLeod, F., McDermott, E.E., Escobedo-Cousin, E., Idil, A.S., Bailey, R.G., Tardio, S., Patel, A., Ponon, N., Gausden, J., Walsh, D., Hutchings, F., Kaiser, M., Cunningham, M.O., Clowry, G.J., LeBeau, F.E.N., Constandinou, T.G., Baker, S.N., Donaldson, N., Degenaar, P., O’Neill, A., Trevelyan, A.J., Jackson, A.: Closed-loop optogenetic control of the dynamics of neural activity in non-human primates. Nature Biomedical Engineering 7(4), 559–575 (2022) https://doi.org/10.1038/s41551-022-00945-8 Nowotny and Levi [2014] Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zaaimi, B., Turnbull, M., Hazra, A., Wang, Y., Gandara, C., McLeod, F., McDermott, E.E., Escobedo-Cousin, E., Idil, A.S., Bailey, R.G., Tardio, S., Patel, A., Ponon, N., Gausden, J., Walsh, D., Hutchings, F., Kaiser, M., Cunningham, M.O., Clowry, G.J., LeBeau, F.E.N., Constandinou, T.G., Baker, S.N., Donaldson, N., Degenaar, P., O’Neill, A., Trevelyan, A.J., Jackson, A.: Closed-loop optogenetic control of the dynamics of neural activity in non-human primates. Nature Biomedical Engineering 7(4), 559–575 (2022) https://doi.org/10.1038/s41551-022-00945-8 Nowotny and Levi [2014] Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  2. Zaaimi, B., Turnbull, M., Hazra, A., Wang, Y., Gandara, C., McLeod, F., McDermott, E.E., Escobedo-Cousin, E., Idil, A.S., Bailey, R.G., Tardio, S., Patel, A., Ponon, N., Gausden, J., Walsh, D., Hutchings, F., Kaiser, M., Cunningham, M.O., Clowry, G.J., LeBeau, F.E.N., Constandinou, T.G., Baker, S.N., Donaldson, N., Degenaar, P., O’Neill, A., Trevelyan, A.J., Jackson, A.: Closed-loop optogenetic control of the dynamics of neural activity in non-human primates. Nature Biomedical Engineering 7(4), 559–575 (2022) https://doi.org/10.1038/s41551-022-00945-8 Nowotny and Levi [2014] Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  3. Nowotny, T., Levi, R.: Voltage-Clamp Technique. In: Jaeger, D., Jung, R. (eds.) Encyclopedia of Computational Neuroscience, pp. 1–5. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-7320-6_137-2 Stefani [2002] Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  4. Stefani, R.T. (ed.): Design of Feedback Control Systems, 4th ed edn. The Oxford series in electrical and computer engineering. Oxford University Press, New York (2002) Shanechi et al. [2017] Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  5. Shanechi, M.M., Orsborn, A.L., Moorman, H.G., Gowda, S., Dangi, S., Carmena, J.M.: Rapid control and feedback rates enhance neuroprosthetic control. Nature Communications 8(1), 13825 (2017) https://doi.org/10.1038/ncomms13825 Gilja et al. [2012] Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  6. Gilja, V., Nuyujukian, P., Chestek, C.A., Cunningham, J.P., Yu, B.M., Fan, J.M., Ryu, S.I., Shenoy, K.V.: A brain machine interface control algorithm designed from a feedback control perspective. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1318–1322. IEEE, San Diego, CA (2012). https://doi.org/10.1109/EMBC.2012.6346180 Willett et al. [2017] Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  7. Willett, F.R., Pandarinath, C., Jarosiewicz, B., Murphy, B.A., Memberg, W.D., Blabe, C.H., Saab, J., Walter, B.L., Sweet, J.A., Miller, J.P., Henderson, J.M., Shenoy, K.V., Simeral, J.D., Hochberg, L.R., Kirsch, R.F., Ajiboye, A.B.: Feedback control policies employed by people using intracortical brain–computer interfaces. Journal of Neural Engineering 14(1), 016001 (2017) https://doi.org/10.1088/1741-2560/14/1/016001 Zhang et al. [2021] Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  8. Zhang, Q., Hu, S., Talay, R., Xiao, Z., Rosenberg, D., Liu, Y., Sun, G., Li, A., Caravan, B., Singh, A., Gould, J.D., Chen, Z.S., Wang, J.: A prototype closed-loop brain–machine interface for the study and treatment of pain. Nature Biomedical Engineering 7(4), 533–545 (2021) https://doi.org/10.1038/s41551-021-00736-7 Shanechi et al. [2016] Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  9. Shanechi, M.M., Orsborn, A.L., Carmena, J.M.: Robust brain-machine interface design using optimal feedback control modeling and adaptive point process filtering. PLOS Computational Biology 12(4), 1004730 (2016) https://doi.org/10.1371/journal.pcbi.1004730 Cunningham et al. [2011] Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  10. Cunningham, J.P., Nuyujukian, P., Gilja, V., Chestek, C.A., Ryu, S.I., Shenoy, K.V.: A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. Journal of Neurophysiology 105(4), 1932–1949 (2011) https://doi.org/10.1152/jn.00503.2010 Wright et al. [2016] Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  11. Wright, J., Macefield, V.G., Van Schaik, A., Tapson, J.C.: A review of control strategies in closed-loop neuroprosthetic systems. Frontiers in Neuroscience 10 (2016) https://doi.org/10.3389/fnins.2016.00312 Pandarinath and Bensmaia [2022] Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  12. Pandarinath, C., Bensmaia, S.J.: The science and engineering behind sensitized brain-controlled bionic hands. Physiological Reviews 102(2), 551–604 (2022) https://doi.org/10.1152/physrev.00034.2020 Pedrocchi et al. [2006] Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  13. Pedrocchi, A., Ferrante, S., De Momi, E., Ferrigno, G.: Error mapping controller: a closed loop neuroprosthesis controlled by artificial neural networks. Journal of NeuroEngineering and Rehabilitation 3(1), 25 (2006) https://doi.org/10.1186/1743-0003-3-25 Bolus et al. [2021] Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  14. Bolus, M.F., Willats, A.A., Rozell, C.J., Stanley, G.B.: State-space optimal feedback control of optogenetically driven neural activity. Journal of Neural Engineering 18(3), 036006 (2021) https://doi.org/10.1088/1741-2552/abb89c Bergs et al. [2023] Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  15. Bergs, A.C.F., Liewald, J.F., Rodriguez-Rozada, S., Liu, Q., Wirt, C., Bessel, A., Zeitzschel, N., Durmaz, H., Nozownik, A., Dill, H., Jospin, M., Vierock, J., Bargmann, C.I., Hegemann, P., Wiegert, J.S., Gottschalk, A.: All-optical closed-loop voltage clamp for precise control of muscles and neurons in live animals. Nature Communications 14(1), 1939 (2023) https://doi.org/10.1038/s41467-023-37622-6 Newman et al. [2015] Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  16. Newman, J.P., Fong, M.-f., Millard, D.C., Whitmire, C.J., Stanley, G.B., Potter, S.M.: Optogenetic feedback control of neural activity. eLife 4, 07192 (2015) https://doi.org/10.7554/eLife.07192 Afram and Janabi-Sharifi [2014] Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  17. Afram, A., Janabi-Sharifi, F.: Theory and applications of HVAC control systems – A review of model predictive control (MPC). Building and Environment 72, 343–355 (2014) https://doi.org/10.1016/j.buildenv.2013.11.016 Zhao and Guo [2022] Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  18. Zhao, C., Guo, L.: Towards a theoretical foundation of PID control for uncertain nonlinear systems. Automatica 142, 110360 (2022) https://doi.org/10.1016/j.automatica.2022.110360 Johnston and Wu [1995] Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  19. Johnston, D., Wu, S.M.-s.: Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass (1995) Bjoring and Meliza [2019] Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  20. Bjoring, M.C., Meliza, C.D.: A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex. PLOS Computational Biology 15(1), 1006723 (2019) https://doi.org/10.1371/journal.pcbi.1006723 Chen and Meliza [2018] Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  21. Chen, A.N., Meliza, C.D.: Phasic and tonic cell types in the zebra finch auditory caudal mesopallium. Journal of Neurophysiology 119(3), 1127–1139 (2018) https://doi.org/10.1152/jn.00694.2017 Martinez et al. [2023] Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  22. Martinez, S., Garcia-Violini, D., Belluscio, M., Piriz, J., Sanchez-Pena, R.: Dynamical models in neuroscience from a closed-loop control perspective. IEEE Reviews in Biomedical Engineering 16, 706–721 (2023) https://doi.org/10.1109/RBME.2022.3180559 Hewing et al. [2020] Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  23. Hewing, L., Wabersich, K.P., Menner, M., Zeilinger, M.N.: Learning-based model predictive control: Toward safe learning in control. Annual Review of Control, Robotics, and Autonomous Systems 3(1), 269–296 (2020) https://doi.org/10.1146/annurev-control-090419-075625 Holkar and Waghmare [2010] Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  24. Holkar, K., Waghmare, L.M.: An overview of model predictive control. International Journal of Control and Automation 3(4), 47–63 (2010) Lin et al. [2023] Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  25. Lin, L., Oncken, J., Agarwal, V., Permann, C., Gribok, A., McJunkin, T., Eggers, S., Boring, R.: Development and assessment of a model predictive controller enabling anticipatory control strategies for a heat-pipe system. Progress in Nuclear Energy 156, 104527 (2023) https://doi.org/10.1016/j.pnucene.2022.104527 Raković and Levine [2019] Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  26. Raković, S.V., Levine, W.S. (eds.): Handbook of Model Predictive Control. Control Engineering. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77489-3 Brunton and Kutz [2019] Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  27. Brunton, S.L., Kutz, J.N.: Data-driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, Cambridge (2019) Schwenzer et al. [2021] Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  28. Schwenzer, M., Ay, M., Bergs, T., Abel, D.: Review on model predictive control: an engineering perspective. The International Journal of Advanced Manufacturing Technology 117(5-6), 1327–1349 (2021) https://doi.org/10.1007/s00170-021-07682-3 Rabinovich et al. [2006] Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  29. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006) https://doi.org/10.1103/RevModPhys.78.1213 Toth et al. [2011] Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  30. Toth, B.A., Kostuk, M., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties I: variational methods. Biological Cybernetics 105(3-4), 217–237 (2011) https://doi.org/10.1007/s00422-011-0459-1 Fröhlich and Jezernik [2005] Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  31. Fröhlich, F., Jezernik, S.: Feedback control of Hodgkin–Huxley nerve cell dynamics. Control Engineering Practice 13(9), 1195–1206 (2005) https://doi.org/10.1016/j.conengprac.2004.10.008 Yue et al. [2022] Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  32. Yue, R., Tomastik, R., Dutta, A.: Non-linear model-based control of neural cell dynamics. preprint, In Review (May 2022). https://doi.org/10.21203/rs.3.rs-580874/v2 Senthilvelmurugan and Subbian [2023] Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  33. Senthilvelmurugan, N.N., Subbian, S.: Active fault tolerant deep brain stimulator for epilepsy using deep neural network. Biomedical Engineering / Biomedizinische Technik 68(4), 373–392 (2023) https://doi.org/10.1515/bmt-2021-0302 Kostuk et al. [2012] Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  34. Kostuk, M., Toth, B.A., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties II: path integral Monte Carlo methods. Biological Cybernetics 106(3), 155–167 (2012) https://doi.org/10.1007/s00422-012-0487-5 Ullah and Schiff [2009] Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  35. Ullah, G., Schiff, S.J.: Tracking and control of neuronal Hodgkin-Huxley dynamics. Physical Review E 79(4), 040901 (2009) https://doi.org/10.1103/PhysRevE.79.040901 Meliza et al. [2014] Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  36. Meliza, C.D., Kostuk, M., Huang, H., Nogaret, A., Margoliash, D., Abarbanel, H.D.I.: Estimating parameters and predicting membrane voltages with conductance-based neuron models. Biol Cybern 108(4), 495–516 (2014) https://doi.org/10.1007/s00422-014-0615-5 Bieker et al. [2019] Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  37. Bieker, K., Peitz, S., Brunton, S.L., Kutz, J.N., Dellnitz, M.: Deep model predictive control with online learning for complex physical systems (2019) https://doi.org/10.48550/ARXIV.1905.10094 . Publisher: arXiv Version Number: 1 Kaiser et al. [2018] Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  38. Kaiser, E., Kutz, J.N., Brunton, S.L.: Sparse identification of nonlinear dynamics for model predictive control in the low-data limit. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 474(2219), 20180335 (2018) https://doi.org/10.1098/rspa.2018.0335 Salzmann et al. [2023] Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  39. Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., Ryll, M.: Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms. IEEE Robotics and Automation Letters 8(4), 2397–2404 (2023) https://doi.org/10.1109/LRA.2023.3246839 Zheng and Wu [2023] Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  40. Zheng, Y., Wu, Z.: Physics-informed online machine learning and predictive control of nonlinear processes with parameter uncertainty. Industrial & Engineering Chemistry Research 62(6), 2804–2818 (2023) https://doi.org/10.1021/acs.iecr.2c03691 Plaster and Kumar [2019] Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  41. Plaster, B., Kumar, G.: Data-driven predictive modeling of neuronal dynamics using long short-term memory. Algorithms 12(10), 203 (2019) https://doi.org/10.3390/a12100203 Sherman-Gold [2012] Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  42. Sherman-Gold, R.: The axon guide, a guide to electrophysiology and biophysics laboratory techniques. San Jose: Molecular Devices, LLC (2012) Sterratt [2011] Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  43. Sterratt, D. (ed.): Principles of Computational Modelling in Neuroscience. Cambridge University Press, Cambridge ; New York (2011). OCLC: ocn690090171 Destexhe et al. [2001] Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  44. Destexhe, A., Rudolph, M., Fellous, J.-M., Sejnowski, T.J.: Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107(1), 13–24 (2001) https://doi.org/10.1016/S0306-4522(01)00344-X Knowlton et al. [2014] Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  45. Knowlton, C., Meliza, C.D., Margoliash, D., Abarbanel, H.D.I.: Dynamical estimation of neuron and network properties III: network analysis using neuron spike times. Biological Cybernetics 108(3), 261–273 (2014) https://doi.org/10.1007/s00422-014-0601-y Skinner [2006] Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  46. Skinner, F.K.: Conductance-based models. Scholarpedia 1(11), 1408 (2006) Bourdeau et al. [2019] Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  47. Bourdeau, M., Zhai, X.Q., Nefzaoui, E., Guo, X., Chatellier, P.: Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustainable Cities and Society 48, 101533 (2019) https://doi.org/10.1016/j.scs.2019.101533 Clark et al. [2022] Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  48. Clark, R., Fuller, L., Platt, J.A., Abarbanel, H.D.I.: Reduced-dimension, biophysical neuron models constructed from observed data. Neural Computation 34(7), 1545–1587 (2022) https://doi.org/10.1162/neco_a_01515 Park and Sandberg [1991] Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  49. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Computation 3(2), 246–257 (1991) https://doi.org/10.1162/neco.1991.3.2.246 Clark et al. [2022] Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  50. Clark, R., Fairbanks, L., Sanchez, R., Wacharanan, P., Abarbanel, H.: Data driven regional weather forecasting. preprint, Predictability, probabilistic forecasts, data assimilation, inverse problems/Climate, atmosphere, ocean, hydrology, cryosphere, biosphere/Big data and artificial intelligence (November 2022). https://doi.org/10.5194/egusphere-2022-1222 Lorenz [1963] Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  51. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of atmospheric sciences 20(2), 130–141 (1963) Pedregosa et al. [2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  52. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. The Journal of Machine Learning Research 12, 2825–2830 (2011) Qin and Badgwell [2003] Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  53. Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice 11(7), 733–764 (2003) https://doi.org/10.1016/S0967-0661(02)00186-7 Fiedler et al. [2023] Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  54. Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.: do-mpc: Towards FAIR nonlinear and robust model predictive control. Control Engineering Practice 140, 105676 (2023) https://doi.org/10.1016/j.conengprac.2023.105676 Andersson et al. [2019] Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  55. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software framework for nonlinear optimization and optimal control. Mathematical Programming Computation 11(1), 1–36 (2019) https://doi.org/10.1007/s12532-018-0139-4 Wächter and Biegler [2006] Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  56. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006) https://doi.org/10.1007/s10107-004-0559-y Mulansky and Kreuz [2016] Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  57. Mulansky, M., Kreuz, T.: PySpike—A Python library for analyzing spike train synchrony. SoftwareX 5, 183–189 (2016) https://doi.org/10.1016/j.softx.2016.07.006 Bottjer et al. [1986] Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  58. Bottjer, S.W., Miesner, E.A., Arnold, A.P.: Changes in neuronal number, density and size account for increases in volume of song-control nuclei during song development in zebra finches. Neuroscience Letters 67(3), 263–268 (1986) https://doi.org/10.1016/0304-3940(86)90319-8 Milias-Argeitis and Khammash [2015] Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  59. Milias-Argeitis, A., Khammash, M.: Adaptive model predictive control of an optogenetic system. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 1265–1270. IEEE, Osaka (2015). https://doi.org/10.1109/CDC.2015.7402385 Fox et al. [2023] Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  60. Fox, Z.R., Batt, G., Ruess, J.: Bayesian filtering for model predictive control of stochastic gene expression in single cells. Physical Biology 20(5), 055003 (2023) https://doi.org/10.1088/1478-3975/ace094 Bemporad and Morari [1999] Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  61. Bemporad, A., Morari, M.: Robust model predictive control: A survey. In: Garulli, A., Tesi, A. (eds.) Robustness in Identification and Control, pp. 207–226. Springer, London (1999) Smith et al. [2010] Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  62. Smith, A.C., Scalon, J.D., Wirth, S., Yanike, M., Suzuki, W.A., Brown, E.N.: State-space algorithms for estimating spike rate functions. Computational Intelligence and Neuroscience 2010, 1–14 (2010) Langdon et al. [2023] Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  63. Langdon, C., Genkin, M., Engel, T.A.: A unifying perspective on neural manifolds and circuits for cognition. Nature Reviews Neuroscience, 1–15 (2023) Lambeth et al. [2023] Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  64. Lambeth, K., Singh, M., Sharma, N.: Robust control barrier functions for safety using a hybrid neuroprosthesis. In: 2023 American Control Conference (ACC), pp. 54–59. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10155862 Wolf and Schearer [2022] Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  65. Wolf, D.N., Schearer, E.M.: Trajectory optimization and model predictive control for functional electrical stimulation-controlled reaching. IEEE Robotics and Automation Letters 7(2), 3093–3098 (2022) https://doi.org/10.1109/LRA.2022.3145946 Singh and Sharma [2023] Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  66. Singh, M., Sharma, N.: Data-driven model predictive control for drop foot correction. In: 2023 American Control Conference (ACC), pp. 2615–2620. IEEE, San Diego, CA, USA (2023). https://doi.org/10.23919/ACC55779.2023.10156600 Bao et al. [2019] Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  67. Bao, X., Kirsch, N., Dodson, A., Sharma, N.: Model predictive control of a feedback-linearized hybrid neuroprosthetic system with a barrier penalty. Journal of Computational and Nonlinear Dynamics 14(10), 101009 (2019) https://doi.org/10.1115/1.4042903 Chatterjee et al. [2020] Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  68. Chatterjee, S., Romero, O., Ashourvan, A., Pequito, S.: Fractional-order model predictive control as a framework for electrical neurostimulation in epilepsy. Journal of Neural Engineering 17(6), 066017 (2020) Brar et al. [2018] Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
  69. Brar, H.K., Exarchos, I., Pan, Y., Theodorou, E., Mahmoudi, B.: Seizure reduction using model predictive control. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3152–3155 (2018). IEEE
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com